GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis

نویسندگان

  • Michitaro Shibata
  • Christian Breuer
  • Ayako Kawamura
  • Natalie M Clark
  • Bart Rymen
  • Luke Braidwood
  • Kengo Morohashi
  • Wolfgang Busch
  • Philip N Benfey
  • Rosangela Sozzani
  • Keiko Sugimoto
چکیده

How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis.

Root hairs are an extensive structure of root epidermal cells and are critical for nutrient acquisition, soil anchorage, and environmental interactions in sessile plants. The phytohormone ethylene (ET) promotes root hair growth and also mediates the effects of different signals that stimulate hair cell development. However, the molecular basis of ET-induced root hair growth remains poorly under...

متن کامل

ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developi...

متن کامل

ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator.

Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as ...

متن کامل

ROOT HAIR DEFECTIVE SIX‐LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth

ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was...

متن کامل

Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis

Multiple phytohormones, including auxin, ethylene, and cytokinin, play vital roles in regulating cell development in the root epidermis. However, their interactions in specific root hair cell developmental stages are largely unexplored. To bridge this gap, we employed genetic and pharmacological approaches as well as transcriptional analysis in order to dissect their distinct and overlapping ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 145  شماره 

صفحات  -

تاریخ انتشار 2018